Chapter VII

 

Instinct

 

Instincts comparable with habits, but different in their origin --

Instincts graduated -- Aphides and ants -- Instincts variable -- Domestic

instincts, their origin -- Natural instincts of the cuckoo, ostrich, and

parasitic bees -- Slave-making ants -- Hive-bee, its cell-making instinct -

- Difficulties on the theory of the Natural Selection of instincts --

Neuter or sterile insects -- Summary.

 

The subject of instinct might have been worked into the previous chapters;

but I have thought that it would be more convenient to treat the subject

separately, especially as so wonderful an instinct as that of the hive-bee

making its cells will probably have occurred to many readers, as a

difficulty sufficient to overthrow my whole theory. I must premise, that I

have nothing to do with the origin of the primary mental powers, any more

than I have with that of life itself. We are concerned only with the

diversities of instinct and of the other mental qualities of animals within

the same class.

 

I will not attempt any definition of instinct. It would be easy to show

that several distinct mental actions are commonly embraced by this term;

but every one understands what is meant, when it is said that instinct

impels the cuckoo to migrate and to lay her eggs in other birds' nests. An

action, which we ourselves should require experience to enable us to

perform, when performed by an animal, more especially by a very young one,

without any experience, and when performed by many individuals in the same

way, without their knowing for what purpose it is performed, is usually

said to be instinctive. But I could show that none of these characters of

instinct are universal. A little dose, as Pierre Huber expresses it, of

judgment or reason, often comes into play, even in animals very low in the

scale of nature.

 

Frederick Cuvier and several of the older metaphysicians have compared

instinct with habit. This comparison gives, I think, a remarkably accurate

notion of the frame of mind under which an instinctive action is performed,

but not of its origin. How unconsciously many habitual actions are

performed, indeed not rarely in direct opposition to our conscious will!

yet they may be modified by the will or reason. Habits easily become

associated with other habits, and with certain periods of time and states

of the body. When once acquired, they often remain constant throughout

life. Several other points of resemblance between instincts and habits

could be pointed out. As in repeating a well-known song, so in instincts,

one action follows another by a sort of rhythm; if a person be interrupted

in a song, or in repeating anything by rote, he is generally forced to go

back to recover the habitual train of thought: so P. Huber found it was

with a caterpillar, which makes a very complicated hammock; for if he took

a caterpillar which had completed its hammock up to, say, the sixth stage

of construction, and put it into a hammock completed up only to the third

stage, the caterpillar simply re-performed the fourth, fifth, and sixth

stages of construction. If, however, a caterpillar were taken out of a

hammock made up, for instance, to the third stage, and were put into one

finished up to the sixth stage, so that much of its work was already done

for it, far from feeling the benefit of this, it was much embarrassed, and,

in order to complete its hammock, seemed forced to start from the third

stage, where it had left off, and thus tried to complete the already

finished work. If we suppose any habitual action to become inherited--and

I think it can be shown that this does sometimes happen--then the

resemblance between what originally was a habit and an instinct becomes so

close as not to be distinguished. If Mozart, instead of playing the

pianoforte at three years old with wonderfully little practice, had played

a tune with no practice at all, be might truly be said to have done so

instinctively. But it would be the most serious error to suppose that the

greater number of instincts have been acquired by habit in one generation,

and then transmitted by inheritance to succeeding generations. It can be

clearly shown that the most wonderful instincts with which we are

acquainted, namely, those of the hive-bee and of many ants, could not

possibly have been thus acquired.

 

It will be universally admitted that instincts are as important as

corporeal structure for the welfare of each species, under its present

conditions of life. Under changed conditions of life, it is at least

possible that slight modifications of instinct might be profitable to a

species; and if it can be shown that instincts do vary ever so little, then

I can see no difficulty in natural selection preserving and continually

accumulating variations of instinct to any extent that may be profitable.

It is thus, as I believe, that all the most complex and wonderful instincts

have originated. As modifications of corporeal structure arise from, and

are increased by, use or habit, and are diminished or lost by disuse, so I

do not doubt it has been with instincts. But I believe that the effects of

habit are of quite subordinate importance to the effects of the natural

selection of what may be called accidental variations of instincts;--that

is of variations produced by the same unknown causes which produce slight

deviations of bodily structure.

 

No complex instinct can possibly be produced through natural selection,

except by the slow and gradual accumulation of numerous, slight, yet

profitable, variations. Hence, as in the case of corporeal structures, we

ought to find in nature, not the actual transitional gradations by which

each complex instinct has been acquired--for these could be found only in

the lineal ancestors of each species--but we ought to find in the

collateral lines of descent some evidence of such gradations; or we ought

at least to be able to show that gradations of some kind are possible; and

this we certainly can do. I have been surprised to find, making allowance

for the instincts of animals having been but little observed except in

Europe and North America, and for no instinct being known amongst extinct

species, how very generally gradations, leading to the most complex

instincts, can be discovered. The canon of 'Natura non facit saltum'

applies with almost equal force to instincts as to bodily organs. Changes

of instinct may sometimes be facilitated by the same species having

different instincts at different periods of life, or at different seasons

of the year, or when placed under different circumstances, &c.; in which

case either one or the other instinct might be preserved by natural

selection. And such instances of diversity of instinct in the same species

can be shown to occur in nature.

 

Again as in the case of corporeal structure, and conformably with my

theory, the instinct of each species is good for itself, but has never, as

far as we can judge, been produced for the exclusive good of others. One

of the strongest instances of an animal apparently performing an action for

the sole good of another, with which I am acquainted, is that of aphides

voluntarily yielding their sweet excretion to ants: that they do so

voluntarily, the following facts show. I removed all the ants from a group

of about a dozen aphides on a dock-plant, and prevented their attendance

during several hours. After this interval, I felt sure that the aphides

would want to excrete. I watched them for some time through a lens, but

not one excreted; I then tickled and stroked them with a hair in the same

manner, as well as I could, as the ants do with their antennae; but not one

excreted. Afterwards I allowed an ant to visit them, and it immediately

seemed, by its eager way of running about, to be well aware what a rich

flock it had discovered; it then began to play with its antennae on the

abdomen first of one aphis and then of another; and each aphis, as soon as

it felt the antennae, immediately lifted up its abdomen and excreted a

limpid drop of sweet juice, which was eagerly devoured by the ant. Even

the quite young aphides behaved in this manner, showing that the action was

instinctive, and not the result of experience. But as the excretion is

extremely viscid, it is probably a convenience to the aphides to have it

removed; and therefore probably the aphides do not instinctively excrete

for the sole good of the ants. Although I do not believe that any animal

in the world performs an action for the exclusive good of another of a

distinct species, yet each species tries to take advantage of the instincts

of others, as each takes advantage of the weaker bodily structure of

others. So again, in some few cases, certain instincts cannot be

considered as absolutely perfect; but as details on this and other such

points are not indispensable, they may be here passed over.

 

As some degree of variation in instincts under a state of nature, and the

inheritance of such variations, are indispensable for the action of natural

selection, as many instances as possible ought to have been here given; but

want of space prevents me. I can only assert, that instincts certainly do

vary--for instance, the migratory instinct, both in extent and direction,

and in its total loss. So it is with the nests of birds, which vary partly

in dependence on the situations chosen, and on the nature and temperature

of the country inhabited, but often from causes wholly unknown to us:

Audubon has given several remarkable cases of differences in nests of the

same species in the northern and southern United States. Fear of any

particular enemy is certainly an instinctive quality, as may be seen in

nestling birds, though it is strengthened by experience, and by the sight

of fear of the same enemy in other animals. But fear of man is slowly

acquired, as I have elsewhere shown, by various animals inhabiting desert

islands; and we may see an instance of this, even in England, in the

greater wildness of all our large birds than of our small birds; for the

large birds have been most persecuted by man. We may safely attribute the

greater wildness of our large birds to this cause; for in uninhabited

islands large birds are not more fearful than small; and the magpie, so

wary in England, is tame in Norway, as is the hooded crow in Egypt.

 

That the general disposition of individuals of the same species, born in a

state of nature, is extremely diversified, can be shown by a multitude of

facts. Several cases also, could be given, of occasional and strange

habits in certain species, which might, if advantageous to the species,

give rise, through natural selection, to quite new instincts. But I am

well aware that these general statements, without facts given in detail,

can produce but a feeble effect on the reader's mind. I can only repeat my

assurance, that I do not speak without good evidence.

 

The possibility, or even probability, of inherited variations of instinct

in a state of nature will be strengthened by briefly considering a few

cases under domestication. We shall thus also be enabled to see the

respective parts which habit and the selection of so-called accidental

variations have played in modifying the mental qualities of our domestic

animals. A number of curious and authentic instances could be given of the

inheritance of all shades of disposition and tastes, and likewise of the

oddest tricks, associated with certain frames of mind or periods of time.

But let us look to the familiar case of the several breeds of dogs: it

cannot be doubted that young pointers (I have myself seen a striking

instance) will sometimes point and even back other dogs the very first time

that they are taken out; retrieving is certainly in some degree inherited

by retrievers; and a tendency to run round, instead of at, a flock of

sheep, by shepherd-dogs. I cannot see that these actions, performed

without experience by the young, and in nearly the same manner by each

individual, performed with eager delight by each breed, and without the end

being known,--for the young pointer can no more know that he points to aid

his master, than the white butterfly knows why she lays her eggs on the

leaf of the cabbage,--I cannot see that these actions differ essentially

from true instincts. If we were to see one kind of wolf, when young and

without any training, as soon as it scented its prey, stand motionless like

a statue, and then slowly crawl forward with a peculiar gait; and another

kind of wolf rushing round, instead of at, a herd of deer, and driving them

to a distant point, we should assuredly call these actions instinctive.

Domestic instincts, as they may be called, are certainly far less fixed or

invariable than natural instincts; but they have been acted on by far less

rigorous selection, and have been transmitted for an incomparably shorter

period, under less fixed conditions of life.

 

How strongly these domestic instincts, habits, and dispositions are

inherited, and how curiously they become mingled, is well shown when

different breeds of dogs are crossed. Thus it is known that a cross with a

bull-dog has affected for many generations the courage and obstinacy of

greyhounds; and a cross with a greyhound has given to a whole family of

shepherd-dogs a tendency to hunt hares. These domestic instincts, when

thus tested by crossing, resemble natural instincts, which in a like manner

become curiously blended together, and for a long period exhibit traces of

the instincts of either parent: for example, Le Roy describes a dog, whose

great-grandfather was a wolf, and this dog showed a trace of its wild

parentage only in one way, by not coming in a straight line to his master

when called.

 

Domestic instincts are sometimes spoken of as actions which have become

inherited solely from long-continued and compulsory habit, but this, I

think, is not true. No one would ever have thought of teaching, or

probably could have taught, the tumbler-pigeon to tumble,--an action which,

as I have witnessed, is performed by young birds, that have never seen a

pigeon tumble. We may believe that some one pigeon showed a slight

tendency to this strange habit, and that the long-continued selection of

the best individuals in successive generations made tumblers what they now

are; and near Glasgow there are house-tumblers, as I hear from Mr. Brent,

which cannot fly eighteen inches high without going head over heels. It

may be doubted whether any one would have thought of training a dog to

point, had not some one dog naturally shown a tendency in this line; and

this is known occasionally to happen, as I once saw in a pure terrier.

When the first tendency was once displayed, methodical selection and the

inherited effects of compulsory training in each successive generation

would soon complete the work; and unconscious selection is still at work,

as each man tries to procure, without intending to improve the breed, dogs

which will stand and hunt best. On the other hand, habit alone in some

cases has sufficed; no animal is more difficult to tame than the young of

the wild rabbit; scarcely any animal is tamer than the young of the tame

rabbit; but I do not suppose that domestic rabbits have ever been selected

for tameness; and I presume that we must attribute the whole of the

inherited change from extreme wildness to extreme tameness, simply to habit

and long-continued close confinement.

 

Natural instincts are lost under domestication: a remarkable instance of

this is seen in those breeds of fowls which very rarely or never become

'broody,' that is, never wish to sit on their eggs. Familiarity alone

prevents our seeing how universally and largely the minds of our domestic

animals have been modified by domestication. It is scarcely possible to

doubt that the love of man has become instinctive in the dog. All wolves,

foxes, jackals, and species of the cat genus, when kept tame, are most

eager to attack poultry, sheep, and pigs; and this tendency has been found

incurable in dogs which have been brought home as puppies from countries,

such as Tierra del Fuego and Australia, where the savages do not keep these

domestic animals. How rarely, on the other hand, do our civilised dogs,

even when quite young, require to be taught not to attack poultry, sheep,

and pigs! No doubt they occasionally do make an attack, and are then

beaten; and if not cured, they are destroyed; so that habit, with some

degree of selection, has probably concurred in civilising by inheritance

our dogs. On the other hand, young chickens have lost, wholly by habit,

that fear of the dog and cat which no doubt was originally instinctive in

them, in the same way as it is so plainly instinctive in young pheasants,

though reared under a hen. It is not that chickens have lost all fear, but

fear only of dogs and cats, for if the hen gives the danger-chuckle, they

will run (more especially young turkeys) from under her, and conceal

themselves in the surrounding grass or thickets; and this is evidently done

for the instinctive purpose of allowing, as we see in wild ground-birds,

their mother to fly away. But this instinct retained by our chickens has

become useless under domestication, for the mother-hen has almost lost by

disuse the power of flight.

 

Hence, we may conclude, that domestic instincts have been acquired and

natural instincts have been lost partly by habit, and partly by man

selecting and accumulating during successive generations, peculiar mental

habits and actions, which at first appeared from what we must in our

ignorance call an accident. In some cases compulsory habit alone has

sufficed to produce such inherited mental changes; in other cases

compulsory habit has done nothing, and all has been the result of

selection, pursued both methodically and unconsciously; but in most cases,

probably, habit and selection have acted together.

 

We shall, perhaps, best understand how instincts in a state of nature have

become modified by selection, by considering a few cases. I will select

only three, out of the several which I shall have to discuss in my future

work,--namely, the instinct which leads the cuckoo to lay her eggs in other

birds' nests; the slave-making instinct of certain ants; and the

comb-making power of the hive-bee: these two latter instincts have

generally, and most justly, been ranked by naturalists as the most

wonderful of all known instincts.

 

It is now commonly admitted that the more immediate and final cause of the

cuckoo's instinct is, that she lays her eggs, not daily, but at intervals

of two or three days; so that, if she were to make her own nest and sit on

her own eggs, those first laid would have to be left for some time

unincubated, or there would be eggs and young birds of different ages in

the same nest. If this were the case, the process of laying and hatching

might be inconveniently long, more especially as she has to migrate at a

very early period; and the first hatched young would probably have to be

fed by the male alone. But the American cuckoo is in this predicament; for

she makes her own nest and has eggs and young successively hatched, all at

the same time. It has been asserted that the American cuckoo occasionally

lays her eggs in other birds' nests; but I hear on the high authority of

Dr. Brewer, that this is a mistake. Nevertheless, I could give several

instances of various birds which have been known occasionally to lay their

eggs in other birds' nests. Now let us suppose that the ancient progenitor

of our European cuckoo had the habits of the American cuckoo; but that

occasionally she laid an egg in another bird's nest. If the old bird

profited by this occasional habit, or if the young were made more vigorous

by advantage having been taken of the mistaken maternal instinct of another

bird, than by their own mother's care, encumbered as she can hardly fail to

be by having eggs and young of different ages at the same time; then the

old birds or the fostered young would gain an advantage. And analogy would

lead me to believe, that the young thus reared would be apt to follow by

inheritance the occasional and aberrant habit of their mother, and in their

turn would be apt to lay their eggs in other birds' nests, and thus be

successful in rearing their young. By a continued process of this nature,

I believe that the strange instinct of our cuckoo could be, and has been,

generated. I may add that, according to Dr. Gray and to some other

observers, the European cuckoo has not utterly lost all maternal love and

care for her own offspring.

 

The occasional habit of birds laying their eggs in other birds' nests,

either of the same or of a distinct species, is not very uncommon with the

Gallinaceae; and this perhaps explains the origin of a singular instinct in

the allied group of ostriches. For several hen ostriches, at least in the

case of the American species, unite and lay first a few eggs in one nest

and then in another; and these are hatched by the males. This instinct may

probably be accounted for by the fact of the hens laying a large number of

eggs; but, as in the case of the cuckoo, at intervals of two or three days.

This instinct, however, of the American ostrich has not as yet been

perfected; for a surprising number of eggs lie strewed over the plains, so

that in one day's hunting I picked up no less than twenty lost and wasted

eggs.

 

Many bees are parasitic, and always lay their eggs in the nests of bees of

other kinds. This case is more remarkable than that of the cuckoo; for

these bees have not only their instincts but their structure modified in

accordance with their parasitic habits; for they do not possess the

pollen-collecting apparatus which would be necessary if they had to store

food for their own young. Some species, likewise, of Sphegidae (wasp-like

insects) are parasitic on other species; and M. Fabre has lately shown good

reason for believing that although the Tachytes nigra generally makes its

own burrow and stores it with paralysed prey for its own larvae to feed on,

yet that when this insect finds a burrow already made and stored by another

sphex, it takes advantage of the prize, and becomes for the occasion

parasitic. In this case, as with the supposed case of the cuckoo, I can

see no difficulty in natural selection making an occasional habit

permanent, if of advantage to the species, and if the insect whose nest and

stored food are thus feloniously appropriated, be not thus exterminated.

 

Slave-making instinct. -- This remarkable instinct was first discovered in

the Formica (Polyerges) rufescens by Pierre Huber, a better observer even

than his celebrated father. This ant is absolutely dependent on its

slaves; without their aid, the species would certainly become extinct in a

single year. The males and fertile females do no work. The workers or

sterile females, though most energetic and courageous in capturing slaves,

do no other work. They are incapable of making their own nests, or of

feeding their own larvae. When the old nest is found inconvenient, and

they have to migrate, it is the slaves which determine the migration, and

actually carry their masters in their jaws. So utterly helpless are the

masters, that when Huber shut up thirty of them without a slave, but with

plenty of the food which they like best, and with their larvae and pupae to

stimulate them to work, they did nothing; they could not even feed

themselves, and many perished of hunger. Huber then introduced a single

slave (F. fusca), and she instantly set to work, fed and saved the

survivors; made some cells and tended the larvae, and put all to rights.

What can be more extraordinary than these well-ascertained facts? If we

had not known of any other slave-making ant, it would have been hopeless to

have speculated how so wonderful an instinct could have been perfected.

 

Formica sanguinea was likewise first discovered by P. Huber to be a

slave-making ant. This species is found in the southern parts of England,

and its habits have been attended to by Mr. F. Smith, of the British

Museum, to whom I am much indebted for information on this and other

subjects. Although fully trusting to the statements of Huber and Mr.

Smith, I tried to approach the subject in a sceptical frame of mind, as any

one may well be excused for doubting the truth of so extraordinary and

odious an instinct as that of making slaves. Hence I will give the

observations which I have myself made, in some little detail. I opened

fourteen nests of F. sanguinea, and found a few slaves in all. Males and

fertile females of the slave-species are found only in their own proper

communities, and have never been observed in the nests of F. sanguinea.

The slaves are black and not above half the size of their red masters, so

that the contrast in their appearance is very great. When the nest is

slightly disturbed, the slaves occasionally come out, and like their

masters are much agitated and defend their nest: when the nest is much

disturbed and the larvae and pupae are exposed, the slaves work

energetically with their masters in carrying them away to a place of

safety. Hence, it is clear, that the slaves feel quite at home. During

the months of June and July, on three successive years, I have watched for

many hours several nests in Surrey and Sussex, and never saw a slave either

leave or enter a nest. As, during these months, the slaves are very few in

number, I thought that they might behave differently when more numerous;

but Mr. Smith informs me that he has watched the nests at various hours

during May, June and August, both in Surrey and Hampshire, and has never

seen the slaves, though present in large numbers in August, either leave or

enter the nest. Hence he considers them as strictly household slaves. The

masters, on the other hand, may be constantly seen bringing in materials

for the nest, and food of all kinds. During the present year, however, in

the month of July, I came across a community with an unusually large stock

of slaves, and I observed a few slaves mingled with their masters leaving

the nest, and marching along the same road to a tall Scotch-fir-tree,

twenty-five yards distant, which they ascended together, probably in search

of aphides or cocci. According to Huber, who had ample opportunities for

observation, in Switzerland the slaves habitually work with their masters

in making the nest, and they alone open and close the doors in the morning

and evening; and, as Huber expressly states, their principal office is to

search for aphides. This difference in the usual habits of the masters and

slaves in the two countries, probably depends merely on the slaves being

captured in greater numbers in Switzerland than in England.

 

One day I fortunately chanced to witness a migration from one nest to

another, and it was a most interesting spectacle to behold the masters

carefully carrying, as Huber has described, their slaves in their jaws.

Another day my attention was struck by about a score of the slave-makers

haunting the same spot, and evidently not in search of food; they

approached and were vigorously repulsed by an independent community of the

slave species (F. fusca); sometimes as many as three of these ants clinging

to the legs of the slave-making F. sanguinea. The latter ruthlessly killed

their small opponents, and carried their dead bodies as food to their nest,

twenty-nine yards distant; but they were prevented from getting any pupae

to rear as slaves. I then dug up a small parcel of the pupae of F. fusca

from another nest, and put them down on a bare spot near the place of

combat; they were eagerly seized, and carried off by the tyrants, who

perhaps fancied that, after all, they had been victorious in their late

combat.

 

At the same time I laid on the same place a small parcel of the pupae of

another species, F. flava, with a few of these little yellow ants still

clinging to the fragments of the nest. This species is sometimes, though

rarely, made into slaves, as has been described by Mr. Smith. Although so

small a species, it is very courageous, and I have seen it ferociously

attack other ants. In one instance I found to my surprise an independent

community of F. flava under a stone beneath a nest of the slave-making F.

sanguinea; and when I had accidentally disturbed both nests, the little

ants attacked their big neighbours with surprising courage. Now I was

curious to ascertain whether F. sanguinea could distinguish the pupae of F.

fusca, which they habitually make into slaves, from those of the little and

furious F. flava, which they rarely capture, and it was evident that they

did at once distinguish them: for we have seen that they eagerly and

instantly seized the pupae of F. fusca, whereas they were much terrified

when they came across the pupae, or even the earth from the nest of F.

flava, and quickly ran away; but in about a quarter of an hour, shortly

after all the little yellow ants had crawled away, they took heart and

carried off the pupae.

 

One evening I visited another community of F. sanguinea, and found a number

of these ants entering their nest, carrying the dead bodies of F. fusca

(showing that it was not a migration) and numerous pupae. I traced the

returning file burthened with booty, for about forty yards, to a very thick

clump of heath, whence I saw the last individual of F. sanguinea emerge,

carrying a pupa; but I was not able to find the desolated nest in the thick

heath. The nest, however, must have been close at hand, for two or three

individuals of F. fusca were rushing about in the greatest agitation, and

one was perched motionless with its own pupa in its mouth on the top of a

spray of heath over its ravaged home.

 

Such are the facts, though they did not need confirmation by me, in regard

to the wonderful instinct of making slaves. Let it be observed what a

contrast the instinctive habits of F. sanguinea present with those of the

F. rufescens. The latter does not build its own nest, does not determine

its own migrations, does not collect food for itself or its young, and

cannot even feed itself: it is absolutely dependent on its numerous

slaves. Formica sanguinea, on the other hand, possesses much fewer slaves,

and in the early part of the summer extremely few. The masters determine

when and where a new nest shall be formed, and when they migrate, the

masters carry the slaves. Both in Switzerland and England the slaves seem

to have the exclusive care of the larvae, and the masters alone go on

slave-making expeditions. In Switzerland the slaves and masters work

together, making and bringing materials for the nest: both, but chiefly

the slaves, tend, and milk as it may be called, their aphides; and thus

both collect food for the community. In England the masters alone usually

leave the nest to collect building materials and food for themselves, their

slaves and larvae. So that the masters in this country receive much less

service from their slaves than they do in Switzerland.

 

By what steps the instinct of F. sanguinea originated I will not pretend to

conjecture. But as ants, which are not slave-makers, will, as I have seen,

carry off pupae of other species, if scattered near their nests, it is

possible that pupae originally stored as food might become developed; and

the ants thus unintentionally reared would then follow their proper

instincts, and do what work they could. If their presence proved useful to

the species which had seized them--if it were more advantageous to this

species to capture workers than to procreate them--the habit of collecting

pupae originally for food might by natural selection be strengthened and

rendered permanent for the very different purpose of raising slaves. When

the instinct was once acquired, if carried out to a much less extent even

than in our British F. sanguinea, which, as we have seen, is less aided by

its slaves than the same species in Switzerland, I can see no difficulty in

natural selection increasing and modifying the instinct--always supposing

each modification to be of use to the species--until an ant was formed as

abjectly dependent on its slaves as is the Formica rufescens.

 

Cell-making instinct of the Hive-Bee. -- I will not here enter on minute

details on this subject, but will merely give an outline of the conclusions

at which I have arrived. He must be a dull man who can examine the

exquisite structure of a comb, so beautifully adapted to its end, without

enthusiastic admiration. We hear from mathematicians that bees have

practically solved a recondite problem, and have made their cells of the

proper shape to hold the greatest possible amount of honey, with the least

possible consumption of precious wax in their construction. It has been

remarked that a skilful workman, with fitting tools and measures, would

find it very difficult to make cells of wax of the true form, though this

is perfectly effected by a crowd of bees working in a dark hive. Grant

whatever instincts you please, and it seems at first quite inconceivable

how they can make all the necessary angles and planes, or even perceive

when they are correctly made. But the difficulty is not nearly so great as

it at first appears: all this beautiful work can be shown, I think, to

follow from a few very simple instincts.

 

I was led to investigate this subject by Mr. Waterhouse, who has shown that

the form of the cell stands in close relation to the presence of adjoining

cells; and the following view may, perhaps, be considered only as a

modification of this theory. Let us look to the great principle of

gradation, and see whether Nature does not reveal to us her method of work.

At one end of a short series we have humble-bees, which use their old

cocoons to hold honey, sometimes adding to them short tubes of wax, and

likewise making separate and very irregular rounded cells of wax. At the

other end of the series we have the cells of the hive-bee, placed in a

double layer: each cell, as is well known, is an hexagonal prism, with the

basal edges of its six sides bevelled so as to join on to a pyramid, formed

of three rhombs. These rhombs have certain angles, and the three which

form the pyramidal base of a single cell on one side of the comb, enter

into the composition of the bases of three adjoining cells on the opposite

side. In the series between the extreme perfection of the cells of the

hive-bee and the simplicity of those of the humble-bee, we have the cells

of the Mexican Melipona domestica, carefully described and figured by

Pierre Huber. The Melipona itself is intermediate in structure between the

hive and humble bee, but more nearly related to the latter: it forms a

nearly regular waxen comb of cylindrical cells, in which the young are

hatched, and, in addition, some large cells of wax for holding honey.

These latter cells are nearly spherical and of nearly equal sizes, and are

aggregated into an irregular mass. But the important point to notice, is

that these cells are always made at that degree of nearness to each other,

that they would have intersected or broken into each other, if the spheres

had been completed; but this is never permitted, the bees building

perfectly flat walls of wax between the spheres which thus tend to

intersect. Hence each cell consists of an outer spherical portion and of

two, three, or more perfectly flat surfaces, according as the cell adjoins

two, three or more other cells. When one cell comes into contact with

three other cells, which, from the spheres being nearly of the same size,

is very frequently and necessarily the case, the three flat surfaces are

united into a pyramid; and this pyramid, as Huber has remarked, is

manifestly a gross imitation of the three-sided pyramidal basis of the cell

of the hive-bee. As in the cells of the hive-bee, so here, the three plane

surfaces in any one cell necessarily enter into the construction of three

adjoining cells. It is obvious that the Melipona saves wax by this manner

of building; for the flat walls between the adjoining cells are not double,

but are of the same thickness as the outer spherical portions, and yet each

flat portion forms a part of two cells.

 

Reflecting on this case, it occurred to me that if the Melipona had made

its spheres at some given distance from each other, and had made them of

equal sizes and had arranged them symmetrically in a double layer, the

resulting structure would probably have been as perfect as the comb of the

hive-bee. Accordingly I wrote to Professor Miller, of Cambridge, and this

geometer has kindly read over the following statement, drawn up from his

information, and tells me that it is strictly correct:-

 

If a number of equal spheres be described with their centres placed in two

parallel layers; with the centre of each sphere at the distance of radius x

sqrt(2) or radius x 1.41421 (or at some lesser distance), from the centres

of the six surrounding spheres in the same layer; and at the same distance

from the centres of the adjoining spheres in the other and parallel layer;

then, if planes of intersection between the several spheres in both layers

be formed, there will result a double layer of hexagonal prisms united

together by pyramidal bases formed of three rhombs; and the rhombs and the

sides of the hexagonal prisms will have every angle identically the same

with the best measurements which have been made of the cells of the

hive-bee.

 

Hence we may safely conclude that if we could slightly modify the instincts

already possessed by the Melipona, and in themselves not very wonderful,

this bee would make a structure as wonderfully perfect as that of the

hive-bee. We must suppose the Melipona to make her cells truly spherical,

and of equal sizes; and this would not be very surprising, seeing that she

already does so to a certain extent, and seeing what perfectly cylindrical

burrows in wood many insects can make, apparently by turning round on a

fixed point. We must suppose the Melipona to arrange her cells in level

layers, as she already does her cylindrical cells; and we must further

suppose, and this is the greatest difficulty, that she can somehow judge

accurately at what distance to stand from her fellow-labourers when several

are making their spheres; but she is already so far enabled to judge of

distance, that she always describes her spheres so as to intersect largely;

and then she unites the points of intersection by perfectly flat surfaces.

We have further to suppose, but this is no difficulty, that after hexagonal

prisms have been formed by the intersection of adjoining spheres in the

same layer, she can prolong the hexagon to any length requisite to hold the

stock of honey; in the same way as the rude humble-bee adds cylinders of

wax to the circular mouths of her old cocoons. By such modifications of

instincts in themselves not very wonderful,--hardly more wonderful than

those which guide a bird to make its nest,--I believe that the hive-bee has

acquired, through natural selection, her inimitable architectural powers.

 

But this theory can be tested by experiment. Following the example of Mr.

Tegetmeier, I separated two combs, and put between them a long, thick,

square strip of wax: the bees instantly began to excavate minute circular

pits in it; and as they deepened these little pits, they made them wider

and wider until they were converted into shallow basins, appearing to the

eye perfectly true or parts of a sphere, and of about the diameter of a

cell. It was most interesting to me to observe that wherever several bees

had begun to excavate these basins near together, they had begun their work

at such a distance from each other, that by the time the basins had

acquired the above stated width (i.e. about the width of an ordinary cell),

and were in depth about one sixth of the diameter of the sphere of which

they formed a part, the rims of the basins intersected or broke into each

other. As soon as this occurred, the bees ceased to excavate, and began to

build up flat walls of wax on the lines of intersection between the basins,

so that each hexagonal prism was built upon the festooned edge of a smooth

basin, instead of on the straight edges of a three-sided pyramid as in the

case of ordinary cells.

 

I then put into the hive, instead of a thick, square piece of wax, a thin

and narrow, knife-edged ridge, coloured with vermilion. The bees instantly

began on both sides to excavate little basins near to each other, in the

same way as before; but the ridge of wax was so thin, that the bottoms of

the basins, if they had been excavated to the same depth as in the former

experiment, would have broken into each other from the opposite sides. The

bees, however, did not suffer this to happen, and they stopped their

excavations in due time; so that the basins, as soon as they had been a

little deepened, came to have flat bottoms; and these flat bottoms, formed

by thin little plates of the vermilion wax having been left ungnawed, were

situated, as far as the eye could judge, exactly along the planes of

imaginary intersection between the basins on the opposite sides of the

ridge of wax. In parts, only little bits, in other parts, large portions

of a rhombic plate had been left between the opposed basins, but the work,

from the unnatural state of things, had not been neatly performed. The

bees must have worked at very nearly the same rate on the opposite sides of

the ridge of vermilion wax, as they circularly gnawed away and deepened the

basins on both sides, in order to have succeeded in thus leaving flat

plates between the basins, by stopping work along the intermediate planes

or planes of intersection.

 

Considering how flexible thin wax is, I do not see that there is any

difficulty in the bees, whilst at work on the two sides of a strip of wax,

perceiving when they have gnawed the wax away to the proper thinness, and

then stopping their work. In ordinary combs it has appeared to me that the

bees do not always succeed in working at exactly the same rate from the

opposite sides; for I have noticed half-completed rhombs at the base of a

just-commenced cell, which were slightly concave on one side, where I

suppose that the bees had excavated too quickly, and convex on the opposed

side, where the bees had worked less quickly. In one well-marked instance,

I put the comb back into the hive, and allowed the bees to go on working

for a short time, and again examined the cell, and I found that the rhombic

plate had been completed, and had become perfectly flat: it was absolutely

impossible, from the extreme thinness of the little rhombic plate, that

they could have effected this by gnawing away the convex side; and I

suspect that the bees in such cases stand in the opposed cells and push and

bend the ductile and warm wax (which as I have tried is easily done) into

its proper intermediate plane, and thus flatten it.

 

From the experiment of the ridge of vermilion wax, we can clearly see that

if the bees were to build for themselves a thin wall of wax, they could

make their cells of the proper shape, by standing at the proper distance

from each other, by excavating at the same rate, and by endeavouring to

make equal spherical hollows, but never allowing the spheres to break into

each other. Now bees, as may be clearly seen by examining the edge of a

growing comb, do make a rough, circumferential wall or rim all round the

comb; and they gnaw into this from the opposite sides, always working

circularly as they deepen each cell. They do not make the whole

three-sided pyramidal base of any one cell at the same time, but only the

one rhombic plate which stands on the extreme growing margin, or the two

plates, as the case may be; and they never complete the upper edges of the

rhombic plates, until the hexagonal walls are commenced. Some of these

statements differ from those made by the justly celebrated elder Huber, but

I am convinced of their accuracy; and if I had space, I could show that

they are conformable with my theory.

 

Huber's statement that the very first cell is excavated out of a little

parallel-sided wall of wax, is not, as far as I have seen, strictly

correct; the first commencement having always been a little hood of wax;

but I will not here enter on these details. We see how important a part

excavation plays in the construction of the cells; but it would be a great

error to suppose that the bees cannot build up a rough wall of wax in the

proper position--that is, along the plane of intersection between two

adjoining spheres. I have several specimens showing clearly that they can

do this. Even in the rude circumferential rim or wall of wax round a

growing comb, flexures may sometimes be observed, corresponding in position

to the planes of the rhombic basal plates of future cells. But the rough

wall of wax has in every case to be finished off, by being largely gnawed

away on both sides. The manner in which the bees build is curious; they

always make the first rough wall from ten to twenty times thicker than the

excessively thin finished wall of the cell, which will ultimately be left.

We shall understand how they work, by supposing masons first to pile up a

broad ridge of cement, and then to begin cutting it away equally on both

sides near the ground, till a smooth, very thin wall is left in the middle;

the masons always piling up the cut-away cement, and adding fresh cement,

on the summit of the ridge. We shall thus have a thin wall steadily

growing upward; but always crowned by a gigantic coping. From all the

cells, both those just commenced and those completed, being thus crowned by

a strong coping of wax, the bees can cluster and crawl over the comb

without injuring the delicate hexagonal walls, which are only about one

four-hundredth of an inch in thickness; the plates of the pyramidal basis

being about twice as thick. By this singular manner of building, strength

is continually given to the comb, with the utmost ultimate economy of wax.

 

It seems at first to add to the difficulty of understanding how the cells

are made, that a multitude of bees all work together; one bee after working

a short time at one cell going to another, so that, as Huber has stated, a

score of individuals work even at the commencement of the first cell. I

was able practically to show this fact, by covering the edges of the

hexagonal walls of a single cell, or the extreme margin of the

circumferential rim of a growing comb, with an extremely thin layer of

melted vermilion wax; and I invariably found that the colour was most

delicately diffused by the bees--as delicately as a painter could have done

with his brush--by atoms of the coloured wax having been taken from the

spot on which it had been placed, and worked into the growing edges of the

cells all round. The work of construction seems to be a sort of balance

struck between many bees, all instinctively standing at the same relative

distance from each other, all trying to sweep equal spheres, and then

building up, or leaving ungnawed, the planes of intersection between these

spheres. It was really curious to note in cases of difficulty, as when two

pieces of comb met at an angle, how often the bees would entirely pull down

and rebuild in different ways the same cell, sometimes recurring to a shape

which they had at first rejected.

 

When bees have a place on which they can stand in their proper positions

for working,--for instance, on a slip of wood, placed directly under the

middle of a comb growing downwards so that the comb has to be built over

one face of the slip--in this case the bees can lay the foundations of one

wall of a new hexagon, in its strictly proper place, projecting beyond the

other completed cells. It suffices that the bees should be enabled to

stand at their proper relative distances from each other and from the walls

of the last completed cells, and then, by striking imaginary spheres, they

can build up a wall intermediate between two adjoining spheres; but, as far

as I have seen, they never gnaw away and finish off the angles of a cell

till a large part both of that cell and of the adjoining cells has been

built. This capacity in bees of laying down under certain circumstances a

rough wall in its proper place between two just-commenced cells, is

important, as it bears on a fact, which seems at first quite subversive of

the foregoing theory; namely, that the cells on the extreme margin of

wasp-combs are sometimes strictly hexagonal; but I have not space here to

enter on this subject. Nor does there seem to me any great difficulty in a

single insect (as in the case of a queen-wasp) making hexagonal cells, if

she work alternately on the inside and outside of two or three cells

commenced at the same time, always standing at the proper relative distance

from the parts of the cells just begun, sweeping spheres or cylinders, and

building up intermediate planes. It is even conceivable that an insect

might, by fixing on a point at which to commence a cell, and then moving

outside, first to one point, and then to five other points, at the proper

relative distances from the central point and from each other, strike the

planes of intersection, and so make an isolated hexagon: but I am not

aware that any such case has been observed; nor would any good be derived

from a single hexagon being built, as in its construction more materials

would be required than for a cylinder.

 

As natural selection acts only by the accumulation of slight modifications

of structure or instinct, each profitable to the individual under its

conditions of life, it may reasonably be asked, how a long and graduated

succession of modified architectural instincts, all tending towards the

present perfect plan of construction, could have profited the progenitors

of the hive-bee? I think the answer is not difficult: it is known that

bees are often hard pressed to get sufficient nectar; and I am informed by

Mr. Tegetmeier that it has been experimentally found that no less than from

twelve to fifteen pounds of dry sugar are consumed by a hive of bees for

the secretion of each pound of wax; so that a prodigious quantity of fluid

nectar must be collected and consumed by the bees in a hive for the

secretion of the wax necessary for the construction of their combs.

Moreover, many bees have to remain idle for many days during the process of

secretion. A large store of honey is indispensable to support a large

stock of bees during the winter; and the security of the hive is known

mainly to depend on a large number of bees being supported. Hence the

saving of wax by largely saving honey must be a most important element of

success in any family of bees. Of course the success of any species of bee

may be dependent on the number of its parasites or other enemies, or on

quite distinct causes, and so be altogether independent of the quantity of

honey which the bees could collect. But let us suppose that this latter

circumstance determined, as it probably often does determine, the numbers

of a humble-bee which could exist in a country; and let us further suppose

that the community lived throughout the winter, and consequently required a

store of honey: there can in this case be no doubt that it would be an

advantage to our humble-bee, if a slight modification of her instinct led

her to make her waxen cells near together, so as to intersect a little; for

a wall in common even to two adjoining cells, would save some little wax.

Hence it would continually be more and more advantageous to our humble-bee,

if she were to make her cells more and more regular, nearer together, and

aggregated into a mass, like the cells of the Melipona; for in this case a

large part of the bounding surface of each cell would serve to bound other

cells, and much wax would be saved. Again, from the same cause, it would

be advantageous to the Melipona, if she were to make her cells closer

together, and more regular in every way than at present; for then, as we

have seen, the spherical surfaces would wholly disappear, and would all be

replaced by plane surfaces; and the Melipona would make a comb as perfect

as that of the hive-bee. Beyond this stage of perfection in architecture,

natural selection could not lead; for the comb of the hive-bee, as far as

we can see, is absolutely perfect in economising wax.

 

Thus, as I believe, the most wonderful of all known instincts, that of the

hive-bee, can be explained by natural selection having taken advantage of

numerous, successive, slight modifications of simpler instincts; natural

selection having by slow degrees, more and more perfectly, led the bees to

sweep equal spheres at a given distance from each other in a double layer,

and to build up and excavate the wax along the planes of intersection. The

bees, of course, no more knowing that they swept their spheres at one

particular distance from each other, than they know what are the several

angles of the hexagonal prisms and of the basal rhombic plates. The motive

power of the process of natural selection having been economy of wax; that

individual swarm which wasted least honey in the secretion of wax, having

succeeded best, and having transmitted by inheritance its newly acquired

economical instinct to new swarms, which in their turn will have had the

best chance of succeeding in the struggle for existence.

 

No doubt many instincts of very difficult explanation could be opposed to

the theory of natural selection,--cases, in which we cannot see how an

instinct could possibly have originated; cases, in which no intermediate

gradations are known to exist; cases of instinct of apparently such

trifling importance, that they could hardly have been acted on by natural

selection; cases of instincts almost identically the same in animals so

remote in the scale of nature, that we cannot account for their similarity

by inheritance from a common parent, and must therefore believe that they

have been acquired by independent acts of natural selection. I will not

here enter on these several cases, but will confine myself to one special

difficulty, which at first appeared to me insuperable, and actually fatal

to my whole theory. I allude to the neuters or sterile females in

insect-communities: for these neuters often differ widely in instinct and

in structure from both the males and fertile females, and yet, from being

sterile, they cannot propagate their kind.

 

The subject well deserves to be discussed at great length, but I will here

take only a single case, that of working or sterile ants. How the workers

have been rendered sterile is a difficulty; but not much greater than that

of any other striking modification of structure; for it can be shown that

some insects and other articulate animals in a state of nature occasionally

become sterile; and if such insects had been social, and it had been

profitable to the community that a number should have been annually born

capable of work, but incapable of procreation, I can see no very great

difficulty in this being effected by natural selection. But I must pass

over this preliminary difficulty. The great difficulty lies in the working

ants differing widely from both the males and the fertile females in

structure, as in the shape of the thorax and in being destitute of wings

and sometimes of eyes, and in instinct. As far as instinct alone is

concerned, the prodigious difference in this respect between the workers

and the perfect females, would have been far better exemplified by the

hive-bee. If a working ant or other neuter insect had been an animal in

the ordinary state, I should have unhesitatingly assumed that all its

characters had been slowly acquired through natural selection; namely, by

an individual having been born with some slight profitable modification of

structure, this being inherited by its offspring, which again varied and

were again selected, and so onwards. But with the working ant we have an

insect differing greatly from its parents, yet absolutely sterile; so that

it could never have transmitted successively acquired modifications of

structure or instinct to its progeny. It may well be asked how is it

possible to reconcile this case with the theory of natural selection?

 

First, let it be remembered that we have innumerable instances, both in our

domestic productions and in those in a state of nature, of all sorts of

differences of structure which have become correlated to certain ages, and

to either sex. We have differences correlated not only to one sex, but to

that short period alone when the reproductive system is active, as in the

nuptial plumage of many birds, and in the hooked jaws of the male salmon.

We have even slight differences in the horns of different breeds of cattle

in relation to an artificially imperfect state of the male sex; for oxen of

certain breeds have longer horns than in other breeds, in comparison with

the horns of the bulls or cows of these same breeds. Hence I can see no

real difficulty in any character having become correlated with the sterile

condition of certain members of insect-communities: the difficulty lies in

understanding how such correlated modifications of structure could have

been slowly accumulated by natural selection.

 

This difficulty, though appearing insuperable, is lessened, or, as I

believe, disappears, when it is remembered that selection may be applied to

the family, as well as to the individual, and may thus gain the desired

end. Thus, a well-flavoured vegetable is cooked, and the individual is

destroyed; but the horticulturist sows seeds of the same stock, and

confidently expects to get nearly the same variety; breeders of cattle wish

the flesh and fat to be well marbled together; the animal has been

slaughtered, but the breeder goes with confidence to the same family. I

have such faith in the powers of selection, that I do not doubt that a

breed of cattle, always yielding oxen with extraordinarily long horns,

could be slowly formed by carefully watching which individual bulls and

cows, when matched, produced oxen with the longest horns; and yet no one ox

could ever have propagated its kind. Thus I believe it has been with

social insects: a slight modification of structure, or instinct,

correlated with the sterile condition of certain members of the community,

has been advantageous to the community: consequently the fertile males and

females of the same community flourished, and transmitted to their fertile

offspring a tendency to produce sterile members having the same

modification. And I believe that this process has been repeated, until

that prodigious amount of difference between the fertile and sterile

females of the same species has been produced, which we see in many social

insects.

 

But we have not as yet touched on the climax of the difficulty; namely, the

fact that the neuters of several ants differ, not only from the fertile

females and males, but from each other, sometimes to an almost incredible

degree, and are thus divided into two or even three castes. The castes,

moreover, do not generally graduate into each other, but are perfectly well

defined; being as distinct from each other, as are any two species of the

same genus, or rather as any two genera of the same family. Thus in

Eciton, there are working and soldier neuters, with jaws and instincts

extraordinarily different: in Cryptocerus, the workers of one caste alone

carry a wonderful sort of shield on their heads, the use of which is quite

unknown: in the Mexican Myrmecocystus, the workers of one caste never

leave the nest; they are fed by the workers of another caste, and they have

an enormously developed abdomen which secretes a sort of honey, supplying

the place of that excreted by the aphides, or the domestic cattle as they

may be called, which our European ants guard or imprison.

 

It will indeed be thought that I have an overweening confidence in the

principle of natural selection, when I do not admit that such wonderful and

well-established facts at once annihilate my theory. In the simpler case

of neuter insects all of one caste or of the same kind, which have been

rendered by natural selection, as I believe to be quite possible, different

from the fertile males and females,--in this case, we may safely conclude

from the analogy of ordinary variations, that each successive, slight,

profitable modification did not probably at first appear in all the

individual neuters in the same nest, but in a few alone; and that by the

long-continued selection of the fertile parents which produced most neuters

with the profitable modification, all the neuters ultimately came to have

the desired character. On this view we ought occasionally to find

neuter-insects of the same species, in the same nest, presenting gradations

of structure; and this we do find, even often, considering how few

neuter-insects out of Europe have been carefully examined. Mr. F. Smith

has shown how surprisingly the neuters of several British ants differ from

each other in size and sometimes in colour; and that the extreme forms can

sometimes be perfectly linked together by individuals taken out of the same

nest: I have myself compared perfect gradations of this kind. It often

happens that the larger or the smaller sized workers are the most numerous;

or that both large and small are numerous, with those of an intermediate

size scanty in numbers. Formica flava has larger and smaller workers, with

some of intermediate size; and, in this species, as Mr. F. Smith has

observed, the larger workers have simple eyes (ocelli), which though small

can be plainly distinguished, whereas the smaller workers have their ocelli

rudimentary. Having carefully dissected several specimens of these

workers, I can affirm that the eyes are far more rudimentary in the smaller

workers than can be accounted for merely by their proportionally lesser

size; and I fully believe, though I dare not assert so positively, that the

workers of intermediate size have their ocelli in an exactly intermediate

condition. So that we here have two bodies of sterile workers in the same

nest, differing not only in size, but in their organs of vision, yet

connected by some few members in an intermediate condition. I may digress

by adding, that if the smaller workers had been the most useful to the

community, and those males and females had been continually selected, which

produced more and more of the smaller workers, until all the workers had

come to be in this condition; we should then have had a species of ant with

neuters very nearly in the same condition with those of Myrmica. For the

workers of Myrmica have not even rudiments of ocelli, though the male and

female ants of this genus have well-developed ocelli.

 

I may give one other case: so confidently did I expect to find gradations

in important points of structure between the different castes of neuters in

the same species, that I gladly availed myself of Mr. F. Smith's offer of

numerous specimens from the same nest of the driver ant (Anomma) of West

Africa. The reader will perhaps best appreciate the amount of difference

in these workers, by my giving not the actual measurements, but a strictly

accurate illustration: the difference was the same as if we were to see a

set of workmen building a house of whom many were five feet four inches

high, and many sixteen feet high; but we must suppose that the larger

workmen had heads four instead of three times as big as those of the

smaller men, and jaws nearly five times as big. The jaws, moreover, of the

working ants of the several sizes differed wonderfully in shape, and in the

form and number of the teeth. But the important fact for us is, that

though the workers can be grouped into castes of different sizes, yet they

graduate insensibly into each other, as does the widely-different structure

of their jaws. I speak confidently on this latter point, as Mr. Lubbock

made drawings for me with the camera lucida of the jaws which I had

dissected from the workers of the several sizes.

 

With these facts before me, I believe that natural selection, by acting on

the fertile parents, could form a species which should regularly produce

neuters, either all of large size with one form of jaw, or all of small

size with jaws having a widely different structure; or lastly, and this is

our climax of difficulty, one set of workers of one size and structure, and

simultaneously another set of workers of a different size and structure;--a

graduated series having been first formed, as in the case of the driver

ant, and then the extreme forms, from being the most useful to the

community, having been produced in greater and greater numbers through the

natural selection of the parents which generated them; until none with an

intermediate structure were produced.

 

Thus, as I believe, the wonderful fact of two distinctly defined castes of

sterile workers existing in the same nest, both widely different from each

other and from their parents, has originated. We can see how useful their

production may have been to a social community of insects, on the same

principle that the division of labour is useful to civilised man. As ants

work by inherited instincts and by inherited tools or weapons, and not by

acquired knowledge and manufactured instruments, a perfect division of

labour could be effected with them only by the workers being sterile; for

had they been fertile, they would have intercrossed, and their instincts

and structure would have become blended. And nature has, as I believe,

effected this admirable division of labour in the communities of ants, by

the means of natural selection. But I am bound to confess, that, with all

my faith in this principle, I should never have anticipated that natural

selection could have been efficient in so high a degree, had not the case

of these neuter insects convinced me of the fact. I have, therefore,

discussed this case, at some little but wholly insufficient length, in

order to show the power of natural selection, and likewise because this is

by far the most serious special difficulty, which my theory has

encountered. The case, also, is very interesting, as it proves that with

animals, as with plants, any amount of modification in structure can be

effected by the accumulation of numerous, slight, and as we must call them

accidental, variations, which are in any manner profitable, without

exercise or habit having come into play. For no amount of exercise, or

habit, or volition, in the utterly sterile members of a community could

possibly have affected the structure or instincts of the fertile members,

which alone leave descendants. I am surprised that no one has advanced

this demonstrative case of neuter insects, against the well-known doctrine

of Lamarck.

 

Summary. -- I have endeavoured briefly in this chapter to show that the

mental qualities of our domestic animals vary, and that the variations are

inherited. Still more briefly I have attempted to show that instincts vary

slightly in a state of nature. No one will dispute that instincts are of

the highest importance to each animal. Therefore I can see no difficulty,

under changing conditions of life, in natural selection accumulating slight

modifications of instinct to any extent, in any useful direction. In some

cases habit or use and disuse have probably come into play. I do not

pretend that the facts given in this chapter strengthen in any great degree

my theory; but none of the cases of difficulty, to the best of my judgment,

annihilate it. On the other hand, the fact that instincts are not always

absolutely perfect and are liable to mistakes;--that no instinct has been

produced for the exclusive good of other animals, but that each animal

takes advantage of the instincts of others;--that the canon in natural

history, of 'natura non facit saltum' is applicable to instincts as well as

to corporeal structure, and is plainly explicable on the foregoing views,

but is otherwise inexplicable,--all tend to corroborate the theory of

natural selection.

 

This theory is, also, strengthened by some few other facts in regard to

instincts; as by that common case of closely allied, but certainly

distinct, species, when inhabiting distant parts of the world and living

under considerably different conditions of life, yet often retaining nearly

the same instincts. For instance, we can understand on the principle of

inheritance, how it is that the thrush of South America lines its nest with

mud, in the same peculiar manner as does our British thrush: how it is

that the male wrens (Troglodytes) of North America, build 'cock-nests,' to

roost in, like the males of our distinct Kitty-wrens,--a habit wholly

unlike that of any other known bird. Finally, it may not be a logical

deduction, but to my imagination it is far more satisfactory to look at

such instincts as the young cuckoo ejecting its foster-brothers,--ants

making slaves,--the larvae of ichneumonidae feeding within the live bodies

of caterpillars,--not as specially endowed or created instincts, but as

small consequences of one general law, leading to the advancement of all

organic beings, namely, multiply, vary, let the strongest live and the

weakest die.